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Quasi-analysis 
A method to order non-homogeneous sets  

by means of the theory of relations 
 

W.V.O. Quine 
 

Abbreviations: Al1 : Analysis into components, 
Ct : Component, 
QAl : Quasi-analysis, 
QCt : Quasi-component, 
SC : similarity circle.2 

 

1. The task of quasi-analysis 

The nature of individual objects (henceforth “elements”) of any domain 
(henceforth “set” of elements) can be indicated by means of two different 
methods. The first method indicates for any individual element the character-
istics that belong to it or the components (Ct) that it is composed of. We call 
this method analysis into components (Al). This name is also appropriate for 
those indications of characteristics that do not analyse the object but its con-
cept, considered as the totality of the characteristics of the object. The second 
method indicates the relations that hold between elements. We call this method 
relational description. Although each of the two methods offers several vari-
ants, these are, however, more or less similar among themselves. At the same 
time, the methods are basically different. Indeed, following the first, one can 
make a statement about an individual element without taking into account 
other elements. Following the second, instead, every statement concerns only 
the relations of an element to one or more other elements. The two methods 

 
 1 Carnap uses several abbreviations in the manuscript with the aim of rendering the text readable 
more easily. In the original manuscript, the abbreviations are chosen in accordance with the German 
words. In this translation, we have rendered the abbreviations consistent with the English words.  This 
choice is motivated by the purpose of bestowing new original clarity, readability and elegance on the 
English version of the text. 
 2 Our translation choice of  “similarity circle” and “similarity neighbourhood” (6-7), standing for 
Carnap’s original phrases “Familienklasse” and “Verwandtenklasse”, is unliteral. This choice is justified 
by the purpose of keeping the language of Quasizerlegung on a homogeneous line of expression with 
that of the subsequent philosophical debate on quasi-analysis and similarity structure.   
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could be labelled, respectively, as indication of individual properties and indi-
cation of relational properties. 

 
Examples of Al: description of the set of conic sections through an ac-

count of the characteristics of the individual sections; description of a curve 
through its coordinate equation, i.e., by giving the ordinate for each point 
on the abscissa; description of a physical state through the values of one (or 
more) state variable for every position; chemical description of a given sub-
stance through its composition of chemical elements; list of historical per-
sons with a statement of the dates of birth and death for each of them. 

Examples of relational description: description of a geometrical figure 
which consists of points and straight lines through an indication of the re-
lations of incidence; description of a curve through its natural equation, i.e., 
through an indication of the position of each element of the curve relative 
to the preceding ones; description of a physical state through spatio-tem-
poral differential equations, i.e.,  through the relation between the value of 
a state variable in some spatio-temporal point and its values in the spatio-
temporal neighbourhood; description of a group of persons by means of a 
genealogy, i.e., by giving their kinship relations.  

 
In opposition to Al, the relational description has the advantage that it does 

not overstep the given domain of objects. The elements of the set to be de-
scribed are, indeed, not analysed into components (Ct), whose set is generally 
not included in the given one. The relational description is, as it were, an “im-
manent approach”. On the other hand, the relational description has the draw-
back of being ponderous in the approach to the individual elements them-
selves. One cannot, indeed, make a statement about an element without refer-
ence to other elements, which are again characterised only through reference 
to other elements, and so forth.  

Now, a method will be discussed here that allows a relational description to 
transform a given description in such a way that retains the properties of the 
immanent approach and assumes the form of the analysis. Thus, a single ap-
proach to the elements is possible. This transformation is called quasi-analysis 
(QAl). 

The simplest version of QAl considered in the following discussion can be 
applied everywhere, even where it seems desirable to switch to more compli-
cated versions. Quasi-analysis starts from a relational description based on a 
symmetric, reflexive and non-transitive relation. Let us call this initial relation 
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“S” and two elements a and b, such that aSb, “similar elements”, “similarity 
pair” or “S-pair”.  

 
If a relational description is based on a relation P whose properties are 
different from the above-mentioned ones (symmetry, reflexivity, intran-
sitivity) or on many relations, P, Q, …, then one must take as basic rela-
tion S certain transformations of these other relations. One can, if nec-
essary, apply several of the following transformations one after the other.  
1) P is transitive, in particular: 

a)  transitive and symmetric. Here a degenerate case occurs: all the 
elements are similar one to the other (with the exception of the 
isolated ones, i.e., the elements that are similar only to them-
selves). Therefore, the set is homogeneous. There are no distin-
guishing properties and, consequently, no possibility of order.  

b) P is transitive but not symmetric. One applies the transformation 
2), whereby transitivity is also removed.  

2) P is not symmetric. One defines S= P ∪̇ 𝑃𝑃�  Def. 
3) P is not reflexive. One defines S = 𝑃𝑃 ∪̇ 𝐼𝐼 ↾  𝐶𝐶�𝑃𝑃 Def. 
4) There are two basic relations, P and Q. 

a) P⪽ 𝑄𝑄 holds. Moreover, P is symmetric, transitive and reflexive, 
Q is symmetric and reflexive. One defines S= P|Q|P Def.  

b) P⪽ 𝑄𝑄 holds, but P and Q do not have the properties required in 
a). One constructs from them two new relations, R and V, which 
have these properties. In particular, one introduces symmetry 
and transitivity by applying the transformations 2) and 3) and 
transitivity by applying the transformation: R= 𝑃𝑃∗ Def. One de-
fines: S=R|V|R Def. 

c) P⪽ 𝑄𝑄 does not hold. One defines: S= 𝑃𝑃 ∪̇ 𝑄𝑄 Def. 
5) There are more than two basic relations. 

a) One of these relations, T, is implied by all the others: 𝑈𝑈 ⪽
𝑇𝑇, 𝑊𝑊 ⪽ 𝑇𝑇, 𝑍𝑍 ⪽ 𝑇𝑇, … One defines:  P= U ∪̇ 𝑊𝑊 ∪̇ 𝑍𝑍, …  𝐷𝐷ef, 
which yields: P ⪽ T. Then, one applies (4a) or (4b) on these two 
relations. 

b) The condition in (a) is not satisfied. One divides the relations 
into two classes and takes both unions of these classes as new 
relations: 𝑃𝑃 = 𝑇𝑇 ∪̇ 𝑈𝑈 ∪̇ … Def., 𝑄𝑄 = 𝑊𝑊 ∪̇ 𝑍𝑍 ∪̇ … Def. If possi-
ble, the division takes place most conveniently when the con-
structed relations P and Q satisfy the condition in 4a) or, if this 
is not possible, the condition in 4b). 
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Let these transformation rules be here given in short without justification. 
That they lead to the desired result, i.e., that the new constructed relations and 
the relation S possess the required properties (symmetry, reflexivity, intransi-
tivity) can be easily seen. According to the peculiarities of the case, other trans-
formations, which lead to the same desirable result, turn out to be often more 
appropriate. 

Now, the problem of quasi-analysis can be formulated as follows. A set of 
elements is given and for every element the list of its similar elements. Find a 
description of this set that uses only these indications, but assigns to the ele-
ments quasi-components (QCts) or quasi-characteristics in such a way that 
every individual element can be described by itself, without reference to other 
elements, according to its QCts. This problem can be solved by assigning to 
the elements QCts in such a way that two elements have a QCts in common if 
and only if they are similar. To minimize arbitrariness, it is required for QAl to 
state about the elements nothing more than what is already contained in the 
given lists. This way, two elements are represented as identical if and only if 
they are identical according to the given lists. Finally, following the principle 
of economy, it is required that no unnecessary QCts occurs in QAl. For this 
reason, in order to find a QAl of a given set of elements, a method must satisfy 
the following four basic requirements [axioms, translator’s note]. 

 
The four basic requirements. 

(I) If two elements are similar, then they share at least one QCt.  

(II) If two elements are not similar, then they do not share any 
QCt. 

(III) If two elements a and b are “similarity equivalent” (i.e., a is 
similar to exactly the same elements that are similar to b), then 
they are “QCt-equivalent” (i.e., a and b possess exactly the same 
QCts).  

The converses of (I), (II) and (III) do not need to be introduced as require-
ments. Rather, they follow from the above-mentioned basic requirements; cf. 
theorems (1), (2), (3) infra.  

(IV) There is no QCs whose removal leaves the requirements (I), 
(II) and (III) still satisfied. 

It is shown through the method to be discussed in the sequel that these four 
requirements are consistent one with the other and are all satisfied. It can be 
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seen that they are independent one of the other in analogy to the independence 
proof of the axioms of geometry (Hilbert).  

Every requirement is shown to be independent of the other by providing an 
example where it is not satisfied, but the others are. In the following example 
(I) is not satisfied, namely for b and c, while the other basic requirements are 
satisfied. a, b, c, d are elements and aSb, bSc, cSd hold (henceforth, we do not 
explicitly mention aSa, etc., and bSa, etc., since these similarities come respec-
tively from the reflexivity and the symmetry of S).  Also, α is a QCt of a and b, 
β is a QCt of c and d. In the next example, (II) is not satisfied, but the other 
requirements are satisfied. a, b, c are elements. aSb, bSc hold and α is a QCt of 
a, b and c. In the next example, only (III) is not satisfied, namely for any pair of 
elements. a, b, c are elements. aSb, bSc, cSa hold. Also, β and γ are the QCts of 
a, γ and α those of b and α and β those of c. In the next example, only (IV) is 
not satisfied, namely for β. a, b, c, d are elements. aSb, bSc, cSa, cSd hold. Also, 
α is QCt of a, b and c, β is QCt of a and b, γ of c and d.  

The following seven theorems are consequences of the four basic require-
ments.  

(1). Theorem. Let the four basic requirements be satisfied. If two elements 
share a common QCt, then they are similar.  

This theorem is the converse of (I) and follows form (II). 

(2). Theorem. Let the four basic requirements be satisfied. If two elements 
have no QCt in common, then they are not similar. 

This theorem is the converse of (II) and follows from (I). 

(3) Theorem. Let the four basic requirements be satisfied. If two elements are 
QCt-equivalent or similarity equivalent, then they are similar. 

The second and the first parts of the theorem come from reflexivity of S and 
Theorem (1), respectively.  

(4). Theorem. Let the four basic requirements be satisfied. If two elements are 
QCt-equivalent, then they are also similarity equivalent.  

This theorem is the converse of (III). 
Proof. Let us assume that a and b are QCt-equivalent. By (I), for every element 
c which is similar to a, a and c share at least a certain QCt. Further, it follows 
from the QCs-equivalence of a and b that b and c share the same QCt. Hence, 
by (1), bSc. Therefore, every element which is similar to a is also similar to b.  

(5). Theorem. Let the four basic requirements be satisfied. If two elements are 
not similarity equivalent, then they are not QCt-equivalent.  

It follows from (4). 
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(6). Theorem. Let the four basic requirements be satisfied. If two elements are 
not QCt-equivalent, then they are not similarity equivalent. 

It follows from (III). 

(7). Theorem. Let the four basic requirements be satisfied. There is no QCt 
which is a “companion” of another QCt (a Ct or a QCt α is a companion of the 
Ct, or the QCt, β when α belongs only to elements to which β also belongs). 

It comes from (IV), since such a QCt can be removed without violating (I) 
and (II).  

2. The first part of QAl: the similarity circles 

At first sight, the problem of QAl seems easy to solve: the relation of sharing 
a QCt between two elements easily takes the place of the given similarity rela-
tion. The difficulty lies in the fact that the similarity relation is not transitive 
while the relation of sharing a QCt is. Therefore, the attempt to finding a QAl 
by assigning a QCt α to an element a and the same QCt α to the elements b, c, 
d which are similar to a is clearly unsuccessful. It would indeed violate the re-
quirement (II), since, from aSb and aSc, one cannot conclude bSc.  

The subsequent discussion is intuitively based on a concrete example. The 
example is taken from the domain of the phenomenology of sense impression. 
During other researches, the investigation of this domain precisely suggested 
the development of the quasi-analytical method.  

Example. Let a set of 12 sounds, namely chords and individual tones, be given. 
Let us label the sounds, the elements of the set, h, i, k, … t: h= tone d, i =chord 
d-f-a, k= c-e-g, l= c-e, m= f-a, n= d-f, o= c-e-a, p= c-f, q= c, r= d-a, s= g, t= c-g. Let 
this composition be unknown. The 12 elements must be considered as indivisi-
ble and analysable only through quasi-analysis. For this, according to what we 
have said above, only the list of the pairs of elements which stand in the sym-
metric, reflexive, intransitive relation S are required. As such S-pairs let us in-
troduce: hi, hn, hr, im, in, io, ip, ir, kl, ko, kp, kq, ks, kt, lo, lp, lq, lt, mn, mo, mp, 
mr, np, nr, op, oq, or, ot, pq, pt, qt, st. The opposite pairs ih, nh, … ts, do not 
need to be mentioned here, because of the symmetry of S (thus, we don’t distin-
guish them from the former in the sequel). Similarly, we don’t explicitly enu-
merate (reflexivity of S!) the identity S-pairs: hh, ii, .. tt. As one sees, S corre-
sponds in the example to the familiar kinship of sounds, which is ordinarily 
called “agreement in (at least) a constituent tone” or “(at least) partial identity”. 
This is emphasised here, however, only for the purpose of illustration, quasi-
analysis does not pay attention to it. The elements must be indivisible in quasi-
analysis which is based only upon the S-pairs. By using the example it can be 
shown that not only its results, but also many single steps of QAl are analogous 
to those of Al. This is another justification for choosing this name.  
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We call 𝑆𝑆�x the similarity neighbourhood3 of x, i.e., the class of elements 
that are similar to x.  

In our example we have: 𝑆𝑆�h = [h, i, n, r], 𝑆𝑆�i = [h, i, m, n, o, p, r], 𝑆𝑆�k = [k, l, 
o, p, q, s, t], 𝑆𝑆�l = [k, l, o, p, q, t], 𝑆𝑆�m = [i, m, n, o, p, r], 𝑆𝑆�n= [h, i, m, n, p, r],  
𝑆𝑆�o = [k, l, m, o, p, q, r, t], 𝑆𝑆�p = [i, k, l, m, n, o, q, t], 𝑆𝑆�q = [k, l, o, p, q, t], 
𝑆𝑆�r = [h, i, m, n, o], 𝑆𝑆�s = [k, s, t], 𝑆𝑆�t = [k, l, o, p, q, s, t]. 

 
(The following sections (8)-(12) and (16) are not required to apply the QAl 

method. Rather, they serve only to compare QAl with Al. Those who are inter-
ested only in the method and not in its justification can also omit them).  

 

(8). Definition. E1 = 𝑥𝑥 �  𝑦𝑦� (S’x ⊂ S’y) Def.  
Thus, xE1y means: the similarity neighbourhood of x is contained in the 

similarity neighbourhood of y.  
Hence, we have in our example, ⊢ 𝑙𝑙𝑙𝑙�𝑜𝑜 but not ⊢ 𝑜𝑜𝑙𝑙�𝑙𝑙. Moreover, 

⊢  𝑠𝑠𝑙𝑙�𝑡𝑡, ⊢ 𝑞𝑞𝑙𝑙�𝑡𝑡, ⊢ ℎ𝑙𝑙�𝑖𝑖, ⊢ 𝑚𝑚𝑙𝑙�𝑖𝑖.  
Thus, a not symmetric relation E1 is obtained from the symmetric relation 

S. This represents, in QAl, the following relation of Al: “y contains all the Cts 
of x”.  

(9). Definition. E2= 𝑙𝑙� ∩̇ 𝑙𝑙�� Def. 
Thus, xE2y means: E1 and its converse hold between x and y. E2 is the al-

ready mentioned relation of similarity equivalence. Indeed, we have:  

(10). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦): 𝑥𝑥𝑙𝑙�𝑦𝑦. ≡ . 𝑆𝑆�𝑥𝑥 = 𝑆𝑆�𝑦𝑦 
According to the basic requirement (III), there arises the problem of find-

ing a QAl where any two elements which stand in the relation E2 are QCt-
equivalent. To compare it again with the Al, E2 correspond to the Ct-equiva-
lence of Al in many cases. This, however, does not always occur, namely, not if 
a Ct occurs in Al only as companion, which, by (7), is excluded in QAl.  

In the example ⊢ 𝑆𝑆�𝑙𝑙 = 𝑆𝑆�𝑞𝑞 hold. Thus, ⊢ 𝑙𝑙𝑙𝑙�𝑞𝑞 and ⊢ 𝑞𝑞𝑙𝑙�𝑙𝑙, whence ⊢ 𝑙𝑙𝑙𝑙�𝑞𝑞. 
Hence l and q must be QCt-equivalent. But they are not Ct-equivalent, since the 
tone e belongs, as Ct, to l, but not to q. We shall later on see that this disagree-
ment is dependent upon (7), and thence upon the basic requirement (IV).  

(11). Definition. 𝑙𝑙 =  𝑙𝑙� ∩̇ − 𝑙𝑙�� Def. 
We have that E if E1, but its converse does not hold. The relation E of QAl 

represents the following relation of Al: “x is Ct-equivalent to a proper part of 
y”.  

 
 3 For this translation choice see fn.2. 



262 RUDOLF CARNAP 

In the example, ⊢ 𝑙𝑙 𝐸𝐸 𝑜𝑜, since ⊢ 𝑙𝑙𝐸𝐸�𝑜𝑜. 𝑜𝑜 − 𝐸𝐸�𝑙𝑙. In Al, the Cts of l (the tones c, e) 
are proper parts of the Cts of o (c, e, a). 

(12). Definition. 𝐸𝐸� =  𝑥𝑥� 𝑦𝑦� �𝑥𝑥𝐸𝐸�𝑦𝑦 . 𝐸𝐸�⃗ �𝑥𝑥 =  𝛬𝛬� Def. 
Thus, xE3y means: the similarity neighbourhood of x is contained in the 

similarity neighbourhood of y and there is no element which stands in the re-
lation E to x. The relation E3 of QAl represents the following relation of Al: “to 
x belongs only one Ct and the same belongs to x” or “x is Ct-equivalent to an 
individual Ct of y” or, in short, “x is an individual Ct of y”. 

In the example we had ⊢ 𝑠𝑠𝐸𝐸�𝑡𝑡 and  ⊢ 𝑞𝑞𝐸𝐸�𝑡𝑡. However, there is no element u in 
the given set such that uEs or uEq. Hence, ⊢ 𝑞𝑞𝐸𝐸�𝑡𝑡 and ⊢ 𝑠𝑠 𝐸𝐸�𝑡𝑡 hold. For com-
parison, let us consider again Al. We have: q (namely the tone c) and s (tone g) 
are individual Cts of t.  

One may conjecture that one could carry out QAl by assigning to every el-
ement x (as it were the “totality of its individual QCts”) the class of the ele-
ments which stands in the relation E3 to it, i.e., the class 𝐸𝐸�����⃗ �

𝑥𝑥. However, as an 
example can clearly show, such a method would result in a violation of the 
basic requirement (I).  

In the example one had: ⊢ ℎ𝐸𝐸�𝑖𝑖 and ⊢ 𝑚𝑚𝐸𝐸�𝑖𝑖. There is no element u of the set 
for which uEh or uEm hold. Thus, ⊢ ℎ𝐸𝐸�𝑖𝑖 and ⊢ 𝑚𝑚𝐸𝐸�𝑖𝑖. There is no other ele-
ment like h and m which stands in the relation 𝐸𝐸� to i: 𝐸𝐸�����⃗ �

𝑖𝑖 = [ℎ, 𝑚𝑚]. On the 
other hand, neither h nor m belong to 𝐸𝐸�����⃗ �

𝑝𝑝. Indeed, ⊢ ℎ − 𝑆𝑆 𝑝𝑝 and ⊢ 𝑚𝑚 − 𝐸𝐸�𝑝𝑝, 
thus ⊢ 𝑚𝑚 − 𝐸𝐸�𝑝𝑝. Therefore, if one take 𝐸𝐸�����⃗ �

𝑥𝑥 as the class of the QCses of x, then 
the elements i and p would share no QCts. But since ⊢ 𝑖𝑖𝑆𝑆𝑝𝑝 the basic require-
ment (I) would not be satisfied.  

 
If we compare with the Al, then we clarify the reason for the shortcoming 

of a QAl based on 𝐸𝐸�: not every Ct occurs somewhere in isolation, i.e., as the 
only Ct of an element.  

 
The attempted QAl of i into the individual QCts h and m would correspond to 
an analysis of the chord d-f-a into the two Cts d and f-a. Indeed, f-a would not 
be further analysable here since the tones f and a never occur in isolation. Now, 
as we will see, in this case the QAl precisely represents the tripartition of Al.  

 
We define the “class of similarity circles (SC)”: 

(13). Definition. 𝑠𝑠𝑖𝑖𝑚𝑚 =  𝛽𝛽� (𝑥𝑥, 𝑦𝑦 ∈  𝛽𝛽 ⊃ 𝑥𝑥𝑆𝑆𝑦𝑦 ∶. (𝑧𝑧): (𝑢𝑢). 𝑢𝑢 ∈ 𝛽𝛽 ⊃ 𝑢𝑢𝑆𝑆𝑧𝑧. ⊃. 𝑧𝑧 ∈
𝛽𝛽)  Def. 

In words: we say 𝛽𝛽 is a SC if the following conditions are satisfied: 1) any 
two members of 𝛽𝛽 are similar; 2) if some z is similar to every member u of 𝛽𝛽, 
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then z belongs to 𝛽𝛽. A SC is thus a complete set of elements that are similar one 
to the other.  

To a SC corresponds, in Al, a class that contains all and only those elements 
which share a given Ct. However, not all such classes of Al have a correspond-
ing SC in QAl, namely, not if the class is based on a Ct which is a companion 
of another. One cannot provide any analogue to such a class if the basic re-
quirement (IV) must not be violated. 

In the example, the class [k,l,o] of elements, which share the tone e 
as Ct, is not a SC. For the latter condition of the definition is not satis-
fied: q does not belong to the set, but is similar to all its members. Since, 
later on, we draw the QCts out of the SCs, there is no QCt correspond-
ing to the tone e. The reason for the above-considered disagreement be-
tween QAl and Al in relation to the tone e lies in the fact that e occurs 
only in elements in which the tone c also occurs. Therefore, e is a com-
panion of c. Thence, according to the basic requirement (IV) and theo-
rem (7), there is no QCt corresponding to it. On the other hand, 𝛿𝛿 =
[ℎ, 𝑖𝑖, 𝑛𝑛, 𝑟𝑟] is a SC. Its members are the elements that share the tone d as 
common Ct. Likewise, 𝛼𝛼 = [𝑖𝑖, 𝑚𝑚, 𝑜𝑜, 𝑟𝑟] is a SC, where the common Ct is 
the tone a. Similarly, 𝛾𝛾 = [𝑘𝑘, 𝑙𝑙, 𝑜𝑜, 𝑝𝑝, 𝑞𝑞, 𝑡𝑡] is a SC with the common tone c. 
One finds as remaining SCs: 𝜑𝜑 = [𝑖𝑖, 𝑚𝑚, 𝑛𝑛, 𝑝𝑝], 𝜉𝜉 = [𝑘𝑘, 𝑠𝑠, 𝑡𝑡], 𝜋𝜋 =
[𝑖𝑖, 𝑚𝑚, 𝑜𝑜, 𝑝𝑝], 𝜌𝜌 = [𝑖𝑖, 𝑚𝑚, 𝑛𝑛, 𝑟𝑟]. Thus, ⊢ 𝑠𝑠𝑖𝑖𝑚𝑚 = [𝛿𝛿, 𝛼𝛼, 𝛾𝛾, 𝜑𝜑, 𝜉𝜉, 𝜋𝜋, 𝜌𝜌].  

(14).  Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦): 𝑥𝑥𝑥𝑥𝑦𝑦. ⊃. (∃𝛼𝛼). 𝛼𝛼 𝜖𝜖 𝑠𝑠𝑖𝑖𝑚𝑚. 𝑥𝑥, 𝑦𝑦𝜖𝜖𝛼𝛼 
In words: for every pair of similar elements there is (at least) a SC which 

contains them both.  
Proof. If there is no element u which is similar to x and y and different from 
both, then for 𝛼𝛼 = [𝑥𝑥, 𝑦𝑦] the theorem is satisfied. However, if there is such a u, 
then one constructs the class [x,y,u]. If there is no element v which is similar to 
every element of the class, then for [x,y,u] the theorem is satisfied. Otherwise, 
let us construct the class [x,y,u,v]. Continuing in this way, if the class of elements 
is finite, we must arrive, in a finite number of steps, at a class for which the 
theorem is satisfied.  

(15). Theorem. ⊢: : (𝑥𝑥. 𝑦𝑦. 𝛼𝛼): . 𝑥𝑥�𝑥𝑥 = 𝑥𝑥�𝑦𝑦.  𝛼𝛼 𝜖𝜖 𝑠𝑠𝑖𝑖𝑚𝑚. ⊃: 𝑥𝑥 ∈ 𝛼𝛼. ≡ . 𝑦𝑦 ∈ 𝛼𝛼 
In words: if two elements are similarity equivalent, then one belongs to the 

same SCs of the other.  
Proof. 𝛼𝛼 ∈ 𝑠𝑠𝑖𝑖𝑚𝑚 and 𝑥𝑥 ∈ 𝛼𝛼 yield: any member of 𝛼𝛼 is similar to x. Thus, since, 
𝑥𝑥�𝑥𝑥 = 𝑥𝑥�𝑦𝑦, it is also similar to y. Therefore, by (13), 𝑦𝑦 𝜖𝜖 𝛼𝛼. 

(16). Definition. Repr = 𝑥𝑥 � 𝛽𝛽�(𝛽𝛽 ∈ 𝑠𝑠𝑖𝑖𝑚𝑚 ∶. (𝑦𝑦): 𝑦𝑦 ∈ 𝛽𝛽. ⊃. 𝑥𝑥𝑥𝑥�𝑦𝑦)    Def. 
X Repr β means: x is a member of β and stands in the relation 𝑥𝑥� to every 

other member of β. In this case, we call the element x a “representative” of the 
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SC β. The relation Repr of QAl corresponds in Al to the relation: “β contains 
all and only those members which share the only Ct of x”. As in the above-
indicated cases, exceptions to this correspondence arise when the Ct in ques-
tion is a companion of another. There are also SCs without representatives. In 
Al this means: the common Ct of the set does not occur in isolation. Since 
⫐� 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 indicates the class of those SCs which have at least a representative, 
sim − ⫐’Repr indicates therefore the class of the SCs without representatives. 
Also, there are SCs with many representatives. These representatives in Al are 
either Ct-equivalent or they differ from one another through Cts that are com-
panions of other Cts.  

In the example, for the SC δ = [h, i, n, r] we have ⊢ ℎ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝛿𝛿. Indeed, ⊢ 𝛿𝛿 ∈
𝑠𝑠𝑠𝑠𝑠𝑠. ℎ ∈ 𝛿𝛿. ℎ𝐸𝐸�𝑠𝑠. ℎ𝐸𝐸�𝑛𝑛. ℎ𝐸𝐸�𝑅𝑅. In the Al: the Cs of h, namely the tone d, is what 
the members of δ have in common.  Hence the expression “representative of δ” 
for h. A SC without representatives is, for example, α = [i,m,o,r], since none of 
its members stands in the relation 𝐸𝐸� to the other three. The reason for this is 
clarified by Al. The Cs common to all the members of α, namely the tone a, 
never occur in isolation. A SC with many representative is γ = [k,l,o,p,q,t]. In-
deed, ⊢ 𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝛾𝛾. 𝑞𝑞 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝛾𝛾 holds. In the Al, l and q differ from one another 
through the tone e as Ct, which is the companion of c.  

Here again we could fall into a method that, at first sight, seems to be suit-
able for a QAl but does not lead to the desired result. Couldn’t we assign to 
every element x, as QCts, the SCs to which it belongs? One clearly deduces 
from (13) that the essential basic requirements, namely (I), (II), (III) would be 
here satisfied. However, the attainment of the requirement of economy, (IV), 
would not be guaranteed. This can be very easily shown through the example. 
As we shall see, by avoiding this mistake one brings QAl and Al into a closer 
analogy.  

In the example, according to the above-considered method, one would assign 
to the individual elements the following classes of SCs as their (attempted) clas-
ses of QCts: the class [δ] (i.e., the class whose only member is the SC δ) to the 
element h, the class [δ,φ,α,π,ρ] to the element i, [γ,ξ] to k, l: [γ], m: [φ,α,π,ρ], 
n: [δ,φ,ρ], o: [γ,α,π], p: [γ,φ,π], q: [γ], r: [δ,α,ρ], s: [ξ], t: [γ,ξ]. The basic re-
quirements (I), (II), (III) are here satisfied. But (IV) is not satisfied. For, even 
though we delete from the just given formulation the QCts π or ρ, or even all 
two, (I), (II), (III) still remain satisfied. These two SCs are also those without 
any analogue in the Al. While to the SCs δ, α, γ, φ, ξ correspond the classes of 
the elements sharing the tones d, a, c, f, g, respectively, neither the members of 
π nor those of ρ share a common Ct.  

as in 
the 

const. 
th. 
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3. The second part of QAl: the QCs-class as a result 

(17). Definition. N = 𝛼𝛼� 𝛽𝛽�  (𝛼𝛼 ∈ 𝛽𝛽. 𝛽𝛽 ⊂ 𝑠𝑠𝑠𝑠𝑠𝑠 ∶: (∃𝑥𝑥, 𝑦𝑦): 𝑥𝑥 ≠ 𝑦𝑦. 𝑥𝑥, 𝑦𝑦 ∈
𝛼𝛼: . (𝛾𝛾): 𝛾𝛾 ∈ 𝛽𝛽. 𝑥𝑥, 𝑦𝑦 ∈ 𝛾𝛾. ⊃. 𝛾𝛾 = 𝛼𝛼) Def. 

Thus, αNβ means: β is a class of SCs; the SC α belongs to β; there are two 
different elements in α such that it is not the case that both of them belong to 
another SC in β. In this case we say: “α is relatively necessary with respect to 
β”. From this follows: 𝑁𝑁��⃗ �𝛽𝛽 is the class of the relatively necessary SCs with re-
spect to β. If β contains all the SCs (β=sim), then 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 is the class of the 
“absolutely necessary SCs”. αNsim means: α is an absolutely necessary SC.  

In the example, let us now take 𝛽𝛽 = [𝛾𝛾, 𝜙𝜙, 𝛼𝛼, 𝜋𝜋]. Thus, ⊢ 𝛾𝛾𝑁𝑁𝛽𝛽 holds, since the 
S-pair kt and others occur only in 𝛾𝛾, but not in  𝜙𝜙, 𝛼𝛼, 𝜋𝜋. Similarly, ⊢ 𝜙𝜙𝑁𝑁𝛽𝛽 be-
cause of the pair mn; ⊢ 𝛼𝛼𝑁𝑁𝛽𝛽 because of the pair ir. However, ⊢ 𝜋𝜋 − 𝑁𝑁𝛽𝛽. There-
fore ⊢ 𝑁𝑁��⃗ �𝛽𝛽 = [𝛾𝛾, 𝜙𝜙, 𝛼𝛼]. Moreover, ⊢ 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 = [𝛾𝛾, 𝛿𝛿, 𝜙𝜙, 𝛼𝛼, 𝜉𝜉] holds, i.e., these 
five SCs are absolutely necessary SCs, in particular γ because of the pair kl; δ 
because of hi; φ because of np; α because of or; ξ because of ks. On the other 
hand, π and ρ are not absolutely necessary SCs, for none of them contains a S-
pair which does not belong also to other SCs.  

(18). Theorem. ⊢  𝑁𝑁 ∈ 𝜀𝜀 
It follows from (17). In words: whatever stands in the relation N to a class 

belongs to it as member.  

(19). Theorem. ⊢: . (𝜆𝜆, 𝜅𝜅, 𝛼𝛼): 𝛼𝛼𝑁𝑁𝜆𝜆. 𝜅𝜅 ⊂ 𝜆𝜆. ⊃. 𝛼𝛼𝑁𝑁𝜅𝜅 
In words: a SC is relatively necessary with respect to a class of SCs when-

ever it is relatively necessary with respect to another class of SCs where the 
former is contained (as subclass).  

Let us now take for example 𝜆𝜆 = [𝛾𝛾, 𝜙𝜙, 𝛼𝛼] and  𝛽𝛽 = [𝛾𝛾, 𝜙𝜙, 𝛼𝛼, 𝜋𝜋], as before. Then, 
⊢. 𝛾𝛾𝑁𝑁𝛽𝛽. 𝜙𝜙𝑁𝑁𝛽𝛽. 𝛼𝛼𝑁𝑁𝛽𝛽 yields ⊢. 𝛾𝛾𝑁𝑁𝜆𝜆. 𝜙𝜙𝑁𝑁𝜆𝜆. 𝛼𝛼𝑁𝑁𝜆𝜆 

(20). Theorem. ⊢. 𝑁𝑁��⃗ ∣ 𝑁𝑁��⃗  = 𝑁𝑁��⃗  
In words: the class μ of the relatively necessary SCs with respect to another 

class is identical with the class of the SCs that are relatively necessary with re-
spect to μ itself.  

(21). Theorem.  ⊢. 𝑁𝑁��⃗ ��𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠� =  𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 
It follows from (20). In words: the class 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 of the absolutely necessary 

SCs is identical with the class of the SCs that are relatively necessary with re-
spect to 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 itself.  

(22). Definition. suf = 𝛽𝛽�(𝛽𝛽 ⊂ 𝑠𝑠𝑠𝑠𝑠𝑠: . (𝑥𝑥, 𝑦𝑦): 𝑥𝑥 ≠ 𝑦𝑦. 𝑥𝑥𝑥𝑥𝑦𝑦. ⊃. (∃𝛼𝛼). 𝛼𝛼 ∈ 𝛽𝛽. 𝑥𝑥, 𝑦𝑦 ∈
𝛼𝛼) Def. 

In words: β is said to be a “sufficient class of SCs” if for any two similar 
elements there is a SC α in β that contains them both. 
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(23). Theorem. ⊢: . (𝛼𝛼, 𝛽𝛽): 𝛼𝛼 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠. 𝛼𝛼 ⊂ 𝛽𝛽. ⊃. 𝛽𝛽 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠  
In words: a class is a sufficient class of SCs whenever it contains a sufficient 

class of SCs as its subclass.  
In the example, let us take 𝜅𝜅 = [𝛾𝛾, 𝛿𝛿, 𝜙𝜙, 𝛼𝛼, 𝜉𝜉]. Hence, ⊢ 𝜅𝜅 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠 . Indeed, for 
any two similar elements there is at least one of these five SCs that contains them 
both. Let us take 𝜅𝜅� = [𝛾𝛾, 𝛿𝛿, 𝜙𝜙, 𝛼𝛼, 𝜉𝜉, 𝜋𝜋], 𝜅𝜅� = [𝛾𝛾, 𝛿𝛿, 𝜙𝜙, 𝛼𝛼, 𝜉𝜉, 𝜌𝜌], 𝜅𝜅� =
[𝛾𝛾, 𝛿𝛿, 𝜙𝜙, 𝛼𝛼, 𝜉𝜉, 𝜋𝜋, 𝜌𝜌] (=sim). By (23) we have ⊢ 𝜅𝜅�, 𝜅𝜅�, 𝜅𝜅� ∈ ℎ𝑖𝑖𝑖𝑖𝑖𝑖. In our example 
there is no other sufficient class of SCs: ⊢ 𝑠𝑠𝑠𝑠𝑠𝑠 = [𝜅𝜅, 𝜅𝜅�, 𝜅𝜅�, 𝜅𝜅�]. 

(24). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): 𝑥𝑥𝑥𝑥𝑦𝑦. 𝛽𝛽 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠 . ⊃. (∃𝛼𝛼). 𝛼𝛼 ∈ 𝛽𝛽. 𝑥𝑥, 𝑦𝑦 ∈ 𝛼𝛼 
It follows from (22). In words: for any two similar elements there is (at 

least) a SC in every sufficient class of SCs that contains them both.  

(25). Theorem. ⊢  𝑁𝑁��⃗ �𝑠𝑠𝑖𝑖𝑠𝑠 ⊂ 𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠  
Follows from (17) and (22). In words: the absolutely necessary SCs belong 

to the intersection of sufficient classes of SCs and therefore to each sufficient 
class of SCs.  

In the example we have ⊢ 𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜅𝜅, since ⊢. 𝜅𝜅 ⊂ 𝜅𝜅�. 𝜅𝜅 ⊂ 𝜅𝜅�. 𝑘𝑘 ⊂ 𝜅𝜅�. Further, 
⊢  𝑁𝑁��⃗ �𝑠𝑠𝑖𝑖𝑠𝑠 =  𝜅𝜅 implies ⊢ 𝑁𝑁��⃗ �𝑠𝑠𝑖𝑖𝑠𝑠 ⊂ 𝜅𝜅.  

(26). Definition. 𝑖𝑖𝑛𝑛𝑛𝑛 =  𝛽𝛽��𝛽𝛽 ⊂ 𝑁𝑁��⃗ �𝛽𝛽�  Def. 
In words: 𝛽𝛽 is said to be a “relatively necessary class of SCs” (𝛽𝛽 ∈ 𝑖𝑖𝑛𝑛𝑛𝑛) if it 

contains only those classes that are relatively necessary with respect to 𝛽𝛽 itself.  
In the example we had ⊢. 𝛾𝛾𝑁𝑁𝛾𝛾. 𝜙𝜙𝑁𝑁𝛾𝛾. 𝛼𝛼𝑁𝑁𝛾𝛾, for 𝛾𝛾 = [𝛾𝛾, 𝜙𝜙, 𝛼𝛼]. Therefore ⊢ 𝛾𝛾 ∈
𝑖𝑖𝑛𝑛𝑛𝑛 holds, i.e., 𝛾𝛾 is a relatively necessary class of SCs. Let us take 𝛾𝛾� =
[𝛼𝛼, 𝜉𝜉, 𝜋𝜋, 𝜌𝜌], so we have again ⊢ 𝛾𝛾� ∈ 𝑖𝑖𝑛𝑛𝑛𝑛 . Indeed, ⊢ 𝛼𝛼𝑁𝑁𝛾𝛾� because of the pair 
or, which only occurs in 𝛼𝛼, but not in ξ, π or ρ. Similarly, ⊢ 𝜉𝜉𝑁𝑁𝛾𝛾�because of the 
pair st; ⊢ 𝜋𝜋𝑁𝑁𝛾𝛾� because of ip; ⊢ 𝜌𝜌𝑁𝑁𝛾𝛾� because of in. For the above indicated 
classes 𝜅𝜅, 𝜅𝜅�, 𝜅𝜅�, 𝜅𝜅�, ⊢ 𝜅𝜅 ∈ 𝑖𝑖𝑛𝑛𝑛𝑛 holds. Indeed, we have  ⊢ 𝛾𝛾𝑁𝑁𝜅𝜅, since the S-pair 
kl occurs only in γ, but not in δ, φ, α, ξ. Moreover, ⊢ 𝛿𝛿𝑁𝑁𝜅𝜅 because of the S-pair 
hn; ⊢ 𝜙𝜙𝑁𝑁𝜅𝜅 because of np; ⊢ 𝛼𝛼𝑁𝑁𝜅𝜅 because of or; ⊢ 𝜉𝜉𝑁𝑁𝜅𝜅 because of st. On the 
other hand, ⊢ 𝜅𝜅�~ ∈ 𝑖𝑖𝑛𝑛𝑛𝑛, for 𝜋𝜋 − 𝑁𝑁𝜅𝜅�, i.e., there is no S-pair in 𝜋𝜋  which does 
not occur also in (at least) one of the remaining classes γ, δ, φ, α, ξ. Similarly, 
⊢ 𝜅𝜅�~ ∈ 𝑖𝑖𝑛𝑛𝑛𝑛 , for 𝜌𝜌 − 𝑁𝑁𝜅𝜅�. In the same way, ⊢ 𝜅𝜅�~ ∈ 𝑖𝑖𝑛𝑛𝑛𝑛 . 

(27). Theorem. ⊢∶ . (𝑥𝑥): 𝑥𝑥 ∈ 𝑖𝑖𝑛𝑛𝑛𝑛 . ⊃. 𝑁𝑁��⃗ �𝑥𝑥 = 𝑥𝑥 
Follows from (26) and (28). In words: a relatively necessary class of SCs is 

identical with the class of the relatively necessary classes with respect to itself.  

(28) Theorem. ⊢  𝑁𝑁��⃗ �𝑠𝑠𝑖𝑖𝑠𝑠 ∈ 𝑖𝑖𝑛𝑛𝑛𝑛  
It follows from (21). In words: the class of the absolutely necessary SCs is 

a relatively necessary class of SCs.  

(29). Definition. sn = suf ∩ nec Def. 
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If 𝛽𝛽 ∈ 𝑠𝑠𝑠𝑠, then 𝛽𝛽 is said to be a “QAl-class”. Thus, sn is the class of the 
QAl-classes. Such a QAl-class contains exactly sufficiently many SCs, to apply 
a QAl satisfying the four basic requirements, and no unnecessary SC. 

(30). Theorem. ⊢ .  𝑠𝑠𝑠𝑠 ⊂ 𝑠𝑠𝑠𝑠𝑠𝑠  
In words: every QAl-class is a sufficient class of SCs.  

(31). Theorem. ⊢ .  𝑠𝑠𝑠𝑠 ⊂ 𝑠𝑠𝑛𝑛𝑛𝑛 
In words: every QAl-class is a relatively necessary class of SCs. Both theo-

rems follow from (29). 

(32). Theorem. ⊢. 𝑠𝑠𝑠𝑠 ⊂ Cl�𝑠𝑠𝑠𝑠𝑠𝑠 
Follows from (29) and (22). In words: every QAl-class is a class of SCs.  

(33). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): 𝑥𝑥𝑥𝑥𝑦𝑦. 𝛽𝛽 ∈ 𝑠𝑠𝑠𝑠. ⊃. (∃𝛼𝛼). 𝛼𝛼 ∈ 𝛽𝛽. 𝑥𝑥, 𝑦𝑦 ∈ 𝛼𝛼 
Follows from (30) and (24). In words: for any two similar elements there is 

(at least) a SC in every QAl-class that contains them both.  

(34). Theorem. ⊢. 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ 𝑝𝑝�𝑠𝑠𝑠𝑠 
It follows from (25). In words: the absolutely necessary SCs belong to every 

QAl-class. In general, sn has many members, i.e., many QAl-classes, so that 
there are many possible QAl of a given field of relations. An example of it will 
be discussed in the sequel (with the rules for a practical application of QAl). 
The following three propositions are concerned with the case where only one 
QAl is possible.  

(35). Theorem. ⊢: 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠. ⊃. 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑠𝑠𝑠𝑠 
Follows from (28). 

(36). Theorem. ⊢ : 𝑁𝑁��⃗ �𝑠𝑠i𝑠𝑠 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠. ⊃. 𝑠𝑠𝑠𝑠 ∈ 1 
By (34), every member of sn contains 𝑁𝑁��⃗ �𝑠𝑠i𝑠𝑠. Now if sn contains more than 

one member, then the member of sn which is different from 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 (for exam-
ple ξ) must contain both 𝑁𝑁��⃗ �𝑠𝑠i𝑠𝑠 and at least a SC which is not contained in 
𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠.  Since, by assumption, any two similar elements already occur in at least 
one member of 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠, ξ would not belong to nec and therefore, by (31), not 
to sn either.  

(37). Theorem. ⊢ : 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠. ⊃. 𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 = (℩𝑥𝑥)(𝑥𝑥 ∈ 𝑠𝑠𝑠𝑠) 
Follows from (35) and (36). The content of the propositions (35), (36), (37) 

is: if the class of the absolutely necessary SCs is a sufficient class of SCs, then 
1) it is itself a QAl-class, so 2) there is only one QAl-class and hence, in this 
case, 3) this class is the only QAl-class.   

The premise of this proposition is fulfilled in our example. Indeed, we had: ⊢
𝑁𝑁��⃗ �𝑠𝑠𝑠𝑠𝑠𝑠 = [𝛾𝛾, 𝛿𝛿, 𝜙𝜙, 𝛼𝛼, 𝜉𝜉] and for 𝜅𝜅 = [𝛾𝛾, 𝛿𝛿, 𝜙𝜙, 𝛼𝛼, 𝜉𝜉] ⊢ 𝜅𝜅 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠.Therefore, 𝜅𝜅 is the 
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only QAl-class. This can be concluded from the previous results also: ⊢. 𝑠𝑠𝑠𝑠𝑠𝑠 =
[𝜅𝜅, 𝜅𝜅�, 𝜅𝜅�, 𝜅𝜅�], ⊢ 𝜅𝜅 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛, ⊢ 𝜅𝜅�, 𝜅𝜅�, 𝜅𝜅�  ∼∈ 𝑛𝑛𝑛𝑛𝑛𝑛 yield, by (29), ⊢. 𝑠𝑠𝑛𝑛 = [𝜅𝜅].  

If there are many QAl-classes, then we must decide which of them forms 
the basis of the QAl. If one of them has a smaller number of element than the 
others, then we will choose it. Otherwise, the choice is of no consequence, if it 
is not determined for reasons outside QAl, which are here not under discus-
sion.    

The QAl on the basis of a QAl-class assigns to every element the members 
of this class (i.e., SCs) as its QCts. Hence, the class of the QCts assigned to an 
element is called its “QCt-class”. These QCt-classes for the individual elements 
are the result of the quasi-analysis. Actually, one can speak of the QCt-class of 
an element only as far as a definite QAl-class is concerned, i.e., a definite mem-
ber of sn, since sn generally has multiple members. Let <β> indicate the rela-
tion of a QCt-class to its element with respect to the QAl-class β, then we must 
define: 

(38). Definition. < 𝛽𝛽 > =  𝑥𝑥� 𝑦𝑦�(𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛. 𝑥𝑥 ⊂ 𝛽𝛽. 𝑦𝑦 ∈ 𝑝𝑝′𝑥𝑥 Def 
Thus, ⫐’<β> indicates the class of the QCs-classes with respect to the QAl-

class β. 

(39). Theorem. ⊢ : (𝛽𝛽, 𝑥𝑥). < 𝛽𝛽 >� 𝑥𝑥 ⊂ 𝛽𝛽 
It follows from (38). In words.: the QCt-class of an element with respect to 

a QAl-class β is contained in β.  
In the example we had κ as the only QAl-class. Therefore, we assign the SCs 
(namely, the members of κ) to their respective members as QCts: accordingly, 
the QCt γ to the elements k, l, o, p, q, t; the QCt δ to the elements h, i, n, r; φ 
to the elements i, m, n, p; α to the elements i, m, o, r; ξ to the elements k, s, t. 
Thus, the following QCt-classes (with respect to κ) are assigned to the following 
individual elements: <κ>’h = [𝛿𝛿], i.e., δ is the only QCt of h; h is a representative 
of the QCt δ; <κ>’i = [𝛿𝛿, 𝜑𝜑, 𝛼𝛼], we say: the element i “consists”, or “is composed 
of”, the QCts δ, φ, α. Moreover, <κ>’k = [𝛾𝛾, 𝜉𝜉]; <κ>’l = [𝛾𝛾]; <κ>’m=[𝜑𝜑, 𝛼𝛼]; 
<κ>’n= [𝛿𝛿, 𝜑𝜑]; <κ>’o= [𝛾𝛾, 𝛼𝛼]; <κ>’p=[𝛾𝛾, 𝜑𝜑]; <κ>’q=[𝛾𝛾] <κ>’r=[𝛿𝛿, 𝛼𝛼]; <κ>’s=[𝜉𝜉]; 
<κ>’t=[𝛾𝛾, 𝜉𝜉]. 

4. Testing the procedure against the four basic requirements 

(40). Theorem. ⊢: . (𝑥𝑥, 𝛼𝛼, 𝛽𝛽): 𝑥𝑥 ∈ 𝛼𝛼. 𝛼𝛼 ∈ 𝛽𝛽. 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛. ≡. 𝛼𝛼 ∈< 𝛽𝛽 >� 𝑥𝑥 
Follows from (38). In words: if an element belongs to a member of a QAl-

class, then this member belongs to the QCt-class of the element with respect 
to the same QAl-class; and vice versa. This gives rise to the following proposi-
tions.  
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(40a). Theorem. ⊢: . (𝑥𝑥, 𝛼𝛼, 𝛽𝛽): 𝛼𝛼 ∈< 𝛽𝛽 >� 𝑥𝑥. ⊃. 𝑥𝑥 ∈ 𝛼𝛼 

(40b). Theorem. ⊢: . (𝑥𝑥, 𝛼𝛼, 𝛽𝛽): 𝛼𝛼 ∈< 𝛽𝛽 >� 𝑥𝑥. ⊃. 𝛼𝛼 ∈ 𝛽𝛽 

(40c). Theorem. ⊢: . (𝑥𝑥, 𝛼𝛼, 𝛽𝛽): 𝛼𝛼 ∈< 𝛽𝛽 >� 𝑥𝑥. ⊃. 𝛽𝛽 ∈ s𝑛𝑛 

(40d). Theorem. ⊢: . (𝑥𝑥, 𝛼𝛼, 𝛽𝛽): 𝛼𝛼 ∈< 𝛽𝛽 >� 𝑥𝑥. ⊃. 𝛼𝛼 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠 
Follows from (40c), (40b), (32). 

(41). Theorem.  ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): 𝑥𝑥𝑥𝑥𝑦𝑦. 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛. ⊃. (∃𝑧𝑧). 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑥𝑥. 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑦𝑦 
Proof. Since 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛, we have 𝛽𝛽 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠 by (29). It follows from (22) that for any 
two similar elements, in particular for the elements x and y of the premise, there 
is a SC α in β which contains them both. Thus, for z = α, we have 𝑧𝑧 ∈
<  𝛽𝛽 >�  𝑥𝑥. 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑦𝑦, by (40). 

(42). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): (∃𝑧𝑧). 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑥𝑥. 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑦𝑦. ⊃. 𝑥𝑥𝑥𝑥𝑦𝑦 
Proof. By assumption and (40a), we have 𝑥𝑥 ∈ 𝑧𝑧 and 𝑦𝑦 ∈ 𝑧𝑧. By (40d), we also 
have 𝑧𝑧 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠. Thus, xSy follows from (13).  

(43). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): 𝑥𝑥𝑥𝑥𝑦𝑦. 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛. ≡. (∃𝑧𝑧). 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑥𝑥. 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑦𝑦 
Proof. One of the two conditionals, out of which this equivalence is composed, 
corresponds to (41). In the other direction, i.e., the converse of (41), (42) yields 
xSy and (40c) yields 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛.  

(44). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): 𝑥𝑥�𝑥𝑥 =   𝑥𝑥�𝑦𝑦. 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛. ⊃. < 𝛽𝛽 >� 𝑥𝑥 =< 𝛽𝛽 >� 𝑦𝑦 
(Indirect) proof. Suppose the proposition is false. Then, there is a member of 
the QCt-class (with respect to β) of an element, say x, which does not belong to 
the QCt-class of y. Let α be this member. Thus, we have 𝛼𝛼 ∈< 𝛽𝛽 >� 𝑥𝑥. 𝛼𝛼~ ∈
<  𝛽𝛽 >� 𝑦𝑦. 𝛼𝛼 ∈ 𝛽𝛽. It follows from (40a) that 𝑥𝑥 ∈ 𝛼𝛼 and 𝛼𝛼 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠 follows from 
(40d). 𝛼𝛼 ∈ 𝛽𝛽, 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛 and (40) yield 𝑦𝑦~ ∈ 𝛼𝛼, which contradicts  𝑥𝑥�𝑥𝑥 =  𝑥𝑥�𝑦𝑦, by 
(15).  

(45). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): < 𝛽𝛽 >� 𝑥𝑥 =< 𝛽𝛽 >� 𝑦𝑦. ⊃. 𝑥𝑥�𝑥𝑥 =  𝑥𝑥�𝑦𝑦 . 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛 
Proof. By assumption and (3), we have: 𝛽𝛽 ∈ 𝑠𝑠𝑛𝑛. Hence, by (41), (𝑠𝑠): 𝑠𝑠𝑥𝑥𝑥𝑥. ⊃
. (∃𝑣𝑣). 𝑣𝑣 ∈< 𝛽𝛽 >� 𝑠𝑠. 𝑣𝑣 ∈< 𝛽𝛽 >� 𝑥𝑥. Now, by assumption again, (𝑧𝑧). 𝑧𝑧 ∈
<  𝛽𝛽 >� 𝑥𝑥. ⊃. 𝑧𝑧 ∈< 𝛽𝛽 >� 𝑦𝑦. Therefore, we have (𝑠𝑠): 𝑠𝑠𝑥𝑥𝑥𝑥. ⊃. (∃𝑣𝑣). 𝑣𝑣 ∈
<  𝛽𝛽 >� 𝑠𝑠. 𝑣𝑣 ∈< 𝛽𝛽 >� 𝑥𝑥. 𝑣𝑣 ∈< 𝛽𝛽 >� 𝑦𝑦. Since, by applying (42), we obtain 
(∃𝑣𝑣). 𝑣𝑣 ∈< 𝛽𝛽 >� 𝑠𝑠. 𝑣𝑣 ∈< 𝛽𝛽 >� 𝑦𝑦. ⊃. 𝑠𝑠𝑥𝑥𝑦𝑦, we have (𝑠𝑠). 𝑠𝑠𝑥𝑥𝑥𝑥 ⊃ 𝑠𝑠𝑥𝑥𝑦𝑦, thus  𝑥𝑥�𝑥𝑥 ⊂
 𝑥𝑥�𝑦𝑦. Similarly, we prove  𝑥𝑥�𝑦𝑦 ⊂  𝑥𝑥�𝑥𝑥. Therefore, 𝑥𝑥�𝑥𝑥 =  𝑥𝑥�𝑦𝑦.  

(44) e (45) can be summarized in the following theorem:  

(46). Theorem. ⊢: . (𝑥𝑥, 𝑦𝑦, 𝛽𝛽): 𝑥𝑥�𝑥𝑥 =  𝑥𝑥�𝑦𝑦. 𝛽𝛽 ∈ s𝑛𝑛. ≡. < 𝛽𝛽 >� 𝑥𝑥 =< 𝛽𝛽 >� 𝑦𝑦 

(47). Theorem. ⊢∷ (𝛼𝛼, 𝛽𝛽): . 𝛼𝛼 ∈ 𝛽𝛽. 𝛽𝛽 ∈ s𝑛𝑛. ⊃: (𝛾𝛾): (∃𝑥𝑥, 𝑦𝑦). 𝑥𝑥𝑥𝑥𝑦𝑦. 𝑥𝑥 ≠ 𝑦𝑦. 𝑥𝑥, 𝑦𝑦 ∈
𝛾𝛾. 𝛾𝛾 ∈ 𝛽𝛽. ⊃. 𝛾𝛾 = 𝛼𝛼 
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In words: if α belongs to the QAl-class β, then there are two similar 
elements which belong only to α and not to any other member of β dif-
ferent from α.  
Proof. By assumption and (31), we obtain 𝛽𝛽 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛. Thus, by (27), 𝛽𝛽 = 𝑁𝑁��⃗ �𝛽𝛽, 
whence 𝛼𝛼 ∈ 𝑁𝑁��⃗ �𝛽𝛽 and therefore αNβ. By applying (17), the theorem holds.  

The theorems derived above lead to the result that the basic requirements 
(I)-(IV) are satisfied. By (41), (I) is satisfied.  

If, following (39), we examine the above indicated QCt-classes of the elements 
of our example, then we can confirm that they share at least one QCt for the S-
pairs mentioned at the beginning of the example. Indeed, we have: the QCt-
classes of c and h share δ, those of h and r share δ, those of h and r share δ, those 
of l and m α and φ, and so forth.  

That the basic requirement (II) is satisfied follows from (42), using the con-
trapositive of its conditional (i.e., exchanging and negating both of its parts). 
In summary, (43) means that (I) and (II) are satisfied.  

The examination of the example shows that no other pairs of elements than 
S-pairs share a QCt.  

(44) means that the basic requirement (III) is satisfied. The converse of 
(III), which is also required, but does not need, as was shown above, to be 
indicated by itself, is satisfied by (45). That (III) and its converse are satisfied 
is summarized in (46).  

In our example, only the pairs kt and lq are similarity equivalent. The same pairs 
are also QCt-equivalent: < 𝜅𝜅 >� 𝑘𝑘 =< 𝜅𝜅 >� 𝑡𝑡 = [𝛾𝛾, 𝜉𝜉], < 𝜅𝜅 >� 𝑙𝑙 =< 𝜅𝜅 >� 𝑞𝑞 =
[𝛾𝛾]. 

(47) means that for any QAl-class, and therefore any possible QAl, and any 
QCt α there is a S-pair whose elements have no other QCt in common than α. 
It follows that, whatever QCt one removes, there would be a S-pair whose ele-
ments would have no QCt to share. Hence, the basic requirement (I) would 
not be satisfied. Therefore, the basic requirement (IV) is satisfied.  

In our example, in order to prove 𝜅𝜅 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛, following (26), we have shown that 
for any member of 𝜅𝜅 there is a S-pair occurring only in this and not in the other 
members. Therefore, whatever member of 𝜅𝜅 we remove, there would be two 
similar elements with no QCt to share anymore. This would violate (I). There-
fore, in our example, the requirement (IV) is satisfied.  

5. Comparison of quasi-analysis with analysis 

The analogy between both methods has been repeatedly emphasised at each 
step. Using the example, it can be very easily shown that the result of QAl, in 
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opposition to the simpler possibilities mentioned earlier, not only satisfies the 
four basic requirements, but it also achieves a more detailed correspondence 
to Al. It turns out that all the Cts have a QCt as their strict analogue, with the 
exception of the Cts that are companions of others and are not allowed, there-
fore, to have any analogue in a QAl that satisfies the four basic requirements.  

In our example, among the Cts of the Al, namely the tones c, d, e, f, a, the tone 
e is a companion of c. Thus, it has no corresponding QCt. With this latter ex-
ception, the QAl corresponds strictly to the Al. If, in the QCt-classes of the 
elements that the QAl has found, we replace the QCt γ by the tone c, similarly 
δ by d, φ by f, ξ by g, α by a, then we have < 𝜅𝜅 >� ℎ = [𝛿𝛿]: [𝑑𝑑], < 𝜅𝜅 >� 𝑖𝑖 =
[𝛿𝛿, 𝜙𝜙, 𝛼𝛼]: [𝑑𝑑, 𝑓𝑓, 𝑎𝑎], < 𝜅𝜅 >� 𝑘𝑘 = [𝛾𝛾, 𝜉𝜉]: [𝑐𝑐, 𝑔𝑔], and so forth. Accordingly, for every 
element the result of quasi-analysis is the chord or the individual tone that the 
analysis assigns to it.  

 




